Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
J Supercomput ; 79(11): 12472-12491, 2023.
Article in English | MEDLINE | ID: covidwho-2265846

ABSTRACT

Iron is one of the trace elements that plays a vital role in the human immune system, especially against variants of SARS-CoV-2 virus. Electrochemical methods are convenient for the detection due to the simplicity of instrumentation available for different analyses. The square wave voltammetry (SQWV) and differential pulse voltammetry (DPV) are useful electrochemical voltammetric techniques for diverse types of compounds such as heavy metals. The basic reason is the increased sensitivity by lowering the capacitive current. In this study, machine learning models were improved to classify concentrations of an analyte depending on the voltammograms obtained alone. SQWV and DPV were used to quantify the concentrations of ferrous ions (Fe+2) in potassium ferrocyanide (K4Fe(CN)6), validated by machine learning models for the data classifications. The greatest classifier algorithms models Backpropagation Neural Networks, Gaussian Naive Bayes, Logistic Regression, K-Nearest Neighbors Algorithm, K-Means clustering, and Random Forest were used as data classifiers, based on the data sets obtained from the measured chemical. Once competed to other algorithms models used previously for the data classification, ours get greater accuracy, maximum accuracy of 100% was obtained for each analyte in 25 s for the datasets.

2.
Anal Bioanal Chem ; 415(8): 1559-1570, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2258083

ABSTRACT

A novel voltammetric platform based on pencil graphite electrode (PGE) modification has been proposed, containing bimetallic (NiFe) Prussian blue analogue nanopolygons decorated with electro-polymerized glyoxal polymer nanocomposites (p-DPG NCs@NiFe PBA Ns/PGE). Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and square wave voltammetry (SWV) were utilized to investigate the electrochemical performance of the proposed sensor. The analytical response of p-DPG NCs@NiFe PBA Ns/PGE was evaluated through the quantity of amisulpride (AMS), one of the most common antipsychotic drugs. Under the optimized experimental and instrumental conditions, the method showed linearity over the range from 0.5 to 15 × 10-8 mol L-1 with a good correlation coefficient (R = 0.9995) and a low detection limit (LOD) reached, 1.5 nmol L-1, with excellent relative standard deviation for human plasma and urine samples. The interference effect of some potentially interfering substances was negligible, and the sensing platform demonstrated an outstanding reproducibility, stability, and reusability. As a first trial, the proposed electrode aimed to shed light on the AMS oxidation mechanism, where the oxidation mechanism was monitored and elucidated using the FTIR technique. It was also found that the prepared p-DPG NCs@NiFe PBA Ns/PGE platform had promising applications for the simultaneous determination of AMS in the presence of some co-administered COVID-19 drugs, which could be attributed to the large active surface area, and high conductivity of bimetallic nanopolygons.


Subject(s)
COVID-19 , Graphite , Humans , Electrochemical Techniques/methods , Amisulpride , Polymers/chemistry , Reproducibility of Results , Electrodes , Graphite/chemistry
3.
NeuroQuantology ; 20(10):9881-9893, 2022.
Article in English | EMBASE | ID: covidwho-2067329

ABSTRACT

For the first time, Favipiravir electrochemical behavior was investigated using voltammetry at a Glassy carbon electrode. Through the use of Cyclic voltammetry,Differential pulse voltammetry, and Square wave voltammetry approaches, the electrochemical behavior of (FAV) was novelty diagnosed in three different ways. The scan rate investigation in the range of 0.01-10 V/s reveals that the process is an electrode process that is completely irreversible and that the oxidation of FAV on the surface of GCE is diffusion controlled. (FAV) demonstrated an irreversible oxidation peak at about +1.402 V at Glassy carbon electrode. The best experimental conditions for the voltammetric determination of FAV at GCE have been achieved through the investigation of optimal operational parameters and the impacts of experimental conditions.The SWV oxidative peak current showed excellent linear dependency on FAV concentration in the region of 10-100 ppm, with limits of detection (LOD) and quantitation (LOQ) of 0.108 and 0.362 ppm, respectively. Additionally, for the analysis of FAV in pharmaceutical tablet and real samples, remarkable recovery findings were attained. The suggested method was successfully used to determine FAV in pharmaceutical and actual sample. The unique studied method does not require sample preparation and is quick and inexpensive. Copyright © 2022, Anka Publishers. All rights reserved.

4.
Chemosensors ; 10(3):108, 2022.
Article in English | ProQuest Central | ID: covidwho-1760412

ABSTRACT

The smuggling of illicit drugs urges the development of new tools for rapid on-site identification in cargos. Current methods rely on presumptive color tests and portable spectroscopic techniques. However, these methods sometimes exhibit inaccurate results due to commonly used cutting agents, the colorful nature of the sample or because the drugs are smuggled in common goods. Interestingly, electrochemical sensors can deal with these specific problems. Herein, an electrochemical device is presented that uses affordable screen-printed electrodes for the electrochemical profiling of several illicit drugs by square-wave voltammetry (SWV). The identification of the illicit compound is based on the oxidation potential of the analyte. Hence, a library of electrochemical profiles is built upon the analysis of illicit drugs and common cutting agents. This library allows the design of a tailor-made script that enables the identification of each drug through a user-friendly interface (laptop or mobile phone). Importantly, the electrochemical test is compared by analyzing 48 confiscated samples with other portable devices based on Raman and FTIR spectroscopy as well as a laboratory standard method (i.e., gas chromatography–mass spectrometry). Overall, the electrochemical results, obtained through the analysis of different samples from confiscated cargos at an end-user site, present a promising alternative to current methods, offering low-cost and rapid testing in the field.

5.
Anal Bioanal Chem ; 414(3): 1313-1322, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1506326

ABSTRACT

Among the deadliest pandemics in history, coronavirus disease 2019 (COVID-19) has wreaked havoc on human lives, economies and public health systems worldwide. To temper its effects, diagnostic methods that are simple, rapid, inexpensive, accurate, selective and sensitive continue to be necessary. In our study, we developed an electrochemical biosensing platform based on gold clusters, mercaptoethanol, the spike protein of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) antigen and bovine serum albumin-modified glassy carbon electrode able to detect the SARS-CoV-2 spike antibody. Moreover, during the detection of the SARS-CoV-2 spike antibody in spiked-real samples, the anodic signal of the produced biosensor at 0.85 V decreased as the amount of the SARS-CoV-2 spike antibody increased. Meanwhile, the recovery and relative standard deviation values for saliva and oropharyngeal swab samples were 97.73% and 3.35% and 102.43% and 4.63%, respectively. In 35 min, the biosensing platform could detect 0.03 fg/mL of the SARS-CoV-2 spike antibody in synthetic media and spiked-saliva or -oropharyngeal swab samples. The method thus issues a linear response to the SARS-CoV-2 spike antibody from 0.1 fg/mL to 10 pg/mL. The cross-reactivity studies with spike antigens of Middle East respiratory syndrome-coronavirus and influenza A and the antigen of pneumonia confirmed the excellent selectivity of the proposed method. The developed method was compared with the lateral flow immunoassay method in terms of sensitivity and it was found to be approximately 109 times more sensitive. Biosensing mechanism of the platform to the SARS-CoV-2 spike antibody.


Subject(s)
Antibodies, Viral/analysis , COVID-19 Serological Testing/instrumentation , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/analysis , Antibodies, Viral/immunology , Biosensing Techniques/instrumentation , COVID-19/immunology , Electrochemical Techniques/instrumentation , Equipment Design , Humans , Hydrogen Bonding , Models, Molecular , SARS-CoV-2/immunology , Saliva/virology , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/immunology
6.
Biochip J ; 15(3): 287-295, 2021.
Article in English | MEDLINE | ID: covidwho-1406183

ABSTRACT

As continues increasing the COVID-19 infections, there is an urgent need for developing fast, simple, selective, and accurate COVID-19 biosensors. A highly uniform gold (Au) microcuboid pattern was used as a microelectrode that allowed monitoring a small analyte. The electrochemical biosensor was used to monitor the COVID-19 S protein within a concentration range from 100 to 5 pmol L-1; it showed a lower detection limit of 276 fmol L-1. Finally, the developed COVID-19 sensor was used to detect a positive sample from a human patient obtained through a nasal swab; the results were confirmed using the PCR technique. The results showed that the SWV technique showed high sensitivity towards detecting COVID-19 and good efficiency for detecting COVID-19 in a positive human sample.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 264: 120237, 2022 Jan 05.
Article in English | MEDLINE | ID: covidwho-1380807

ABSTRACT

Here, we reported the synthesis of reduced porous graphene oxide (rPGO) decorated with gold nanoparticles (Au NPs) to modify the ITO electrode. Then we used this highly uniform Au NPs@rPGO modified ITO electrode as a surface-enhanced Raman spectroscopy-active surface and a working electrode. The uses of the Au nanoparticles and porous graphene enhance the Raman signals and the electrochemical conductivity. COVID-19 protein-based biosensor was developed based on immobilization of anti-COVID-19 antibodies onto the modified electrode and its uses as a probe for capturing the COVID-19 protein. The developed biosensor showed the capability of monitoring the COVID-19 protein within a concentration range from 100 nmol/L to 1 pmol/L with a limit of detection (LOD) of 75 fmol/L. Furthermore, COVID-19 protein was detected based on electrochemical techniques within a concentration range from 100 nmol/L to 500 fmol/L that showed a LOD of 39.5 fmol/L. Finally, three concentrations of COVID-19 protein spiked in human serum were investigated. Thus, the present sensor showed high efficiency towards the detection of COVID-19.


Subject(s)
Biosensing Techniques , COVID-19 , Graphite , Metal Nanoparticles , Electrochemical Techniques , Electrodes , Gold , Humans , Porosity , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
8.
Microchem J ; 168: 106445, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1240512

ABSTRACT

Amid the global threat caused by the coronavirus disease 2019 (COVID-19) pandemic, developing sufficiently rapid, accurate, sensitive and selective methods of diagnosing both symptomatic and asymptomatic cases is essential to alleviating and controlling the pandemic's effects. This article describes an electrochemical immunoassay platform developed to determine the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) spike antibody by using gold-clusters capped with cysteamine, glutaraldehyde, the spike protein of the SARS-CoV-2 antigen and bovine serum albumin on a glassy carbon electrode. The electrochemical oxidation signal of the antigen-based immunosensor at 0.9 V was used to detect the SARS-CoV-2 spike antibody. When saliva and oropharyngeal swab samples were analysed, the recovery and relative standard deviation values were 96.97%-101.99% and 4.99%-5.74%, respectively. The method's limit of detection relative to the SARS-CoV-2 spike antibody in synthetic media and in saliva or oropharyngeal swab samples was 0.01 ag/mL, while the immunosensor's linear response to the SARS-CoV-2 spike antibody varied from 0.1 to 1000 ag/mL. The cross-reactivity of the Middle East respiratory syndrome-coronavirus spike antigen was evaluated after being immobilised onto the functionalised gold-cluster based sensor, indicated that the good specifity of the produced immunosensor.

9.
Acta Pharm Sin B ; 11(8): 2344-2361, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1085588

ABSTRACT

Recent infectious disease outbreaks, such as COVID-19 and Ebola, have highlighted the need for rapid and accurate diagnosis to initiate treatment and curb transmission. Successful diagnostic strategies critically depend on the efficiency of biological sampling and timely analysis. However, current diagnostic techniques are invasive/intrusive and present a severe bottleneck by requiring specialist equipment and trained personnel. Moreover, centralised test facilities are poorly accessible and the requirement to travel may increase disease transmission. Self-administrable, point-of-care (PoC) microneedle diagnostic devices could provide a viable solution to these problems. These miniature needle arrays can detect biomarkers in/from the skin in a minimally invasive manner to provide (near-) real-time diagnosis. Few microneedle devices have been developed specifically for infectious disease diagnosis, though similar technologies are well established in other fields and generally adaptable for infectious disease diagnosis. These include microneedles for biofluid extraction, microneedle sensors and analyte-capturing microneedles, or combinations thereof. Analyte sampling/detection from both blood and dermal interstitial fluid is possible. These technologies are in their early stages of development for infectious disease diagnostics, and there is a vast scope for further development. In this review, we discuss the utility and future outlook of these microneedle technologies in infectious disease diagnosis.

10.
Chem Eng J ; 420: 127575, 2021 Sep 15.
Article in English | MEDLINE | ID: covidwho-898556

ABSTRACT

Virus-induced infection such as SARS-CoV-2 is a serious threat to human health and the economic setback of the world. Continued advances in the development of technologies are required before the viruses undergo mutation. The low concentration of viruses in environmental samples makes the detection extremely challenging; simple, accurate and rapid detection methods are in urgent need. Of all the analytical techniques, electrochemical methods have the established capabilities to address the issues. Particularly, the integration of nanotechnology would allow miniature devices to be made available at the point-of-care. This review outlines the capabilities of electrochemical methods in conjunction with nanotechnology for the detection of SARS-CoV-2. Future directions and challenges of the electrochemical biosensors for pathogen detection are covered including wearable and conformal biosensors, detection of plant pathogens, multiplexed detection, and reusable biosensors for on-site monitoring, thereby providing low-cost and disposable biosensors.

SELECTION OF CITATIONS
SEARCH DETAIL